hree Point Control Analysis and Recommendations

J. Nigel Ellis Ph.D., CSP, P.E., CPE

www.FallSafety.com 1.800.372.7775

International Society for Fall Protection Symposium, Las Vegas

28 June 2013

Climbing, stepping, holding, moving at heights

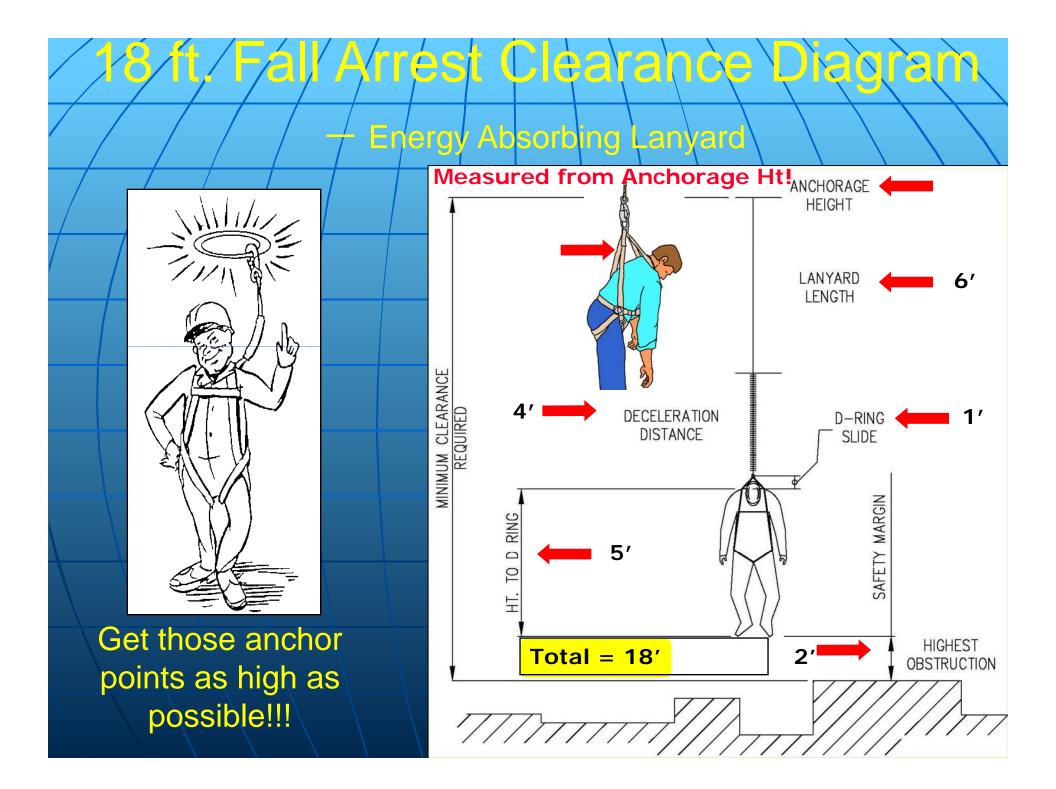
t we will discuss

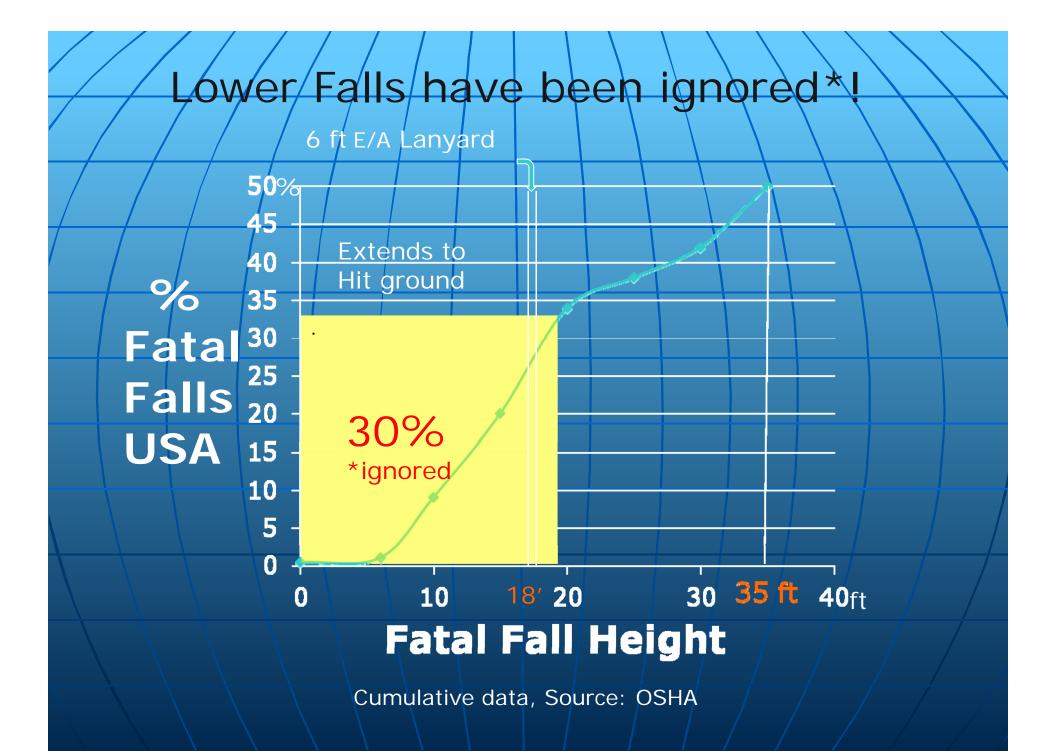
"Two hands and one foot then one hand and two feet And so on"

New Rules on Grip Design while Falling

"Only Two Point Control?"

Goals of Three Point Control Contact Gripping not leaning Holding not touching Hand not stomach or other body part Flat step or rung not crevice for foot


To Help <u>Assure</u> Your Balance And Stability


all Fatalities at Work USA Source BLS/OSHA Fall/Height v. % Fall Deaths Under 6 ft 1% 9% Under 10 ft Under 15 ft 20% 34% ← 18ft 30% fall deaths Under 20 ft Under 25 ft 38% Under 30 ft 42% 50% Under 35 ft Roofers Union Analysis: 50% fatalities: Harness used but not attached 50% fatalities: Harness not used; 100% exposure

Fall Arrest can take up to 18 ft

Harness and 6 ft lanyard attached at waist level produces Free Fall of 7.5 ft and requires Clearance of 7.5 + 3.5 E/A + 6 ft Height of operator + Harness stretch = 18 ft

> Ref: Introduction to Fall Protection 4th edition, ASSE 2012 Fall Clearance Requirements: pp 190, 215, 221, 231, 301-2

Focus: Fixed and Portable Ladders

Hold Rungs or Side Rails?

Size of Rung
Size of Step
Side Rail Size

Note: Fall Protection regulations apply at the governmental trigger points

Ladders – The RULE:

Always Hold Rungs

Think "Dynamic" not "Static"!

JMichigan (NIOSH funded)

ung Ph.D. Thesis

Hand/Handhold Decoupling Forces

- Procedure:
- 1. Step on platform; secure
- Hold overhead rung, rail, or grab bar as directed
- 3. Lower platform (6"/sec -- 2-4 seconds)
- 4. Measure maximum force on rung to release

Note: Fast Fall Arrest System provided (SRL) Subjects M/F 50%; IRB Approved

Full Dissertation http://hdl.handle.net/2027.42/84452

Details and Tables by your SmartPhone

Adapted from Young et al, Human Factors Journal, Oct. 2009

Perform simulated fall:

 Platform and subject are lowered slowly, no impulse

(0.5 ft/sec)

- Posture passively stabilizes upper-limb joints
- Body weight provides external load

Three Experiments

 Twelve subjects in each experiment (6 male , 6 female)
 <u>36 subjects</u> measured forces in same way
 Different handholds for each experiment
 Several RUNGS and RAILS (or siderails)
 Size, orientation, friction, shape

Three Experiments: Results

Compare the force applied by one hand and the subject's bodyweight (can they hang on?)

 <1.0 suggests "no", <0.5 suggests "not even with two hands" EXP 1a: Peak breakaway strength, normalized strength, and grip strength (mean ± SD), by handle and gender, for typical ladder handholds. Experiment with 6 males and 6 females, dominant hand measurement.*

			Peak	Force /	Peak Force /		
	Peak F	orce (lbs)	Bodyweight		Grip Strength		
Handle	Males	Females	Males	Females	Males	Females	
RUNG (cylinder)	$189 \pm$	111 ±	$1.17 \pm$	0.94 ±	$1.52 \pm$	$1.53 \pm$	
1" diameter	47	21	0.13	0.18	0.26	0.2	
RAIL (cylinder)	$116 \pm$	80 ±	$0.72 \pm$	0.68 ±	0.93 ±	$1.10 \pm$	
1" diameter	30	10	0.1	0.12	0.15	0.13	
RAIL (plate)	92 ±	59 ±	$0.55 \pm$	$0.50 \pm$	< 0.73 ±	0.81 ±	── 1⁄2 Fail
2.5"x0.4"	37	16	0.14	0.13	0.23	0.19	
Grip Strength	$124 \pm$	72 ±	$0.85 \pm$	0.61 ±	1	1	
(Jamar 45mm)	13	8	0.2	0.08			

*Table adapted from Young et al. 2009 (Table 2) also in Young, JG. Dissertation (Table 2.3.1)

Negative Safety factor for vertical object handholds and non-round rungs Women subjects selected had low upper body strength

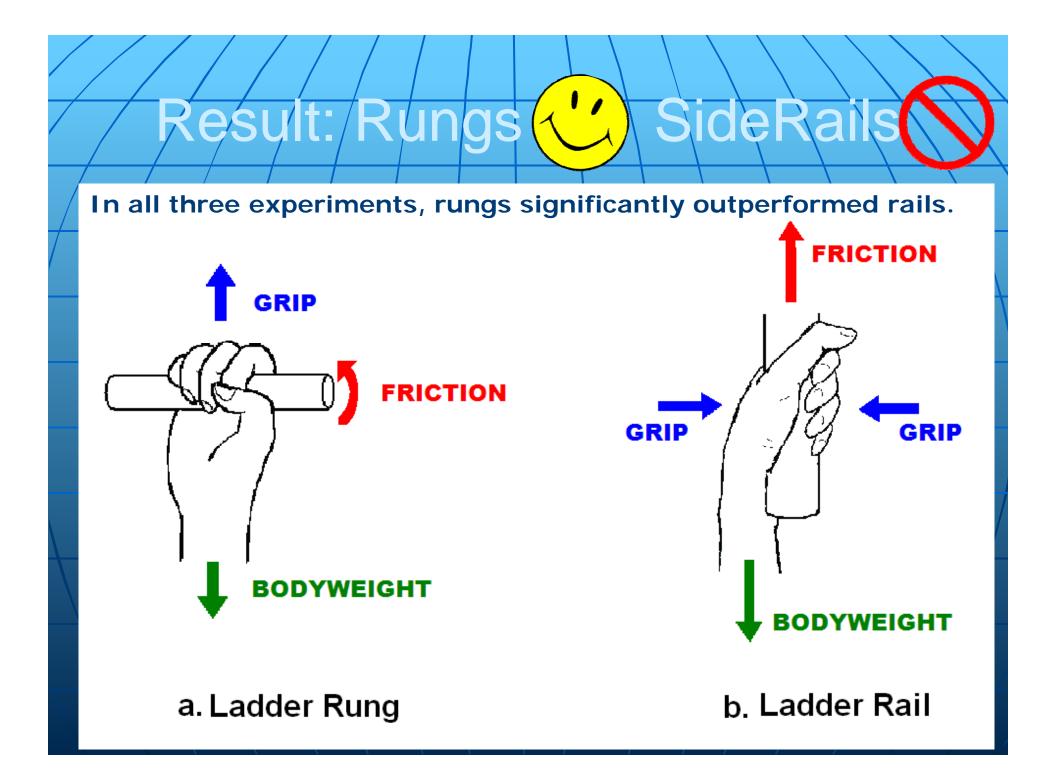
	EXP 2a&b: Peak breakaw	yay streng	th and no	rmalized s	strength (mean \pm SD), by handle and h 6 males and 6 females, both Breakaway Force / Bodyweight Males Females All 1.07 \pm 0.83 \pm 0.94 \pm 0.33 0.21 0.30 0.96 \pm 0.62 \pm 0.79 \pm 0.28 0.11 0.27 0.83 \pm 0.63 \pm 0.73 \pm 0.21 0.25 0.20 0.75 \pm 0.54 \pm 0.64 \pm 0.21 0.15 0.21 $\frac{1}{2}$ 0.70 \pm 0.50 \pm 0.60 \pm Fail 0.15 0.11 0.19				
	gender, for typical ladder	handhold	s. Experi	ment with	6 males a	nd 6 fema	les, both		
	hands.*		-				-		$\overline{\ }$
/				·	Brea	kaway For	ce /		
		Breaka	way Force	e (lbs)	Е	Bodyweight	t		
		Males	Females	All	Males	Females	All		\backslash
	RUNG ^a (cylinder)	188 ±	113 ±	150 ±	1.07 ±	$0.83 \pm$	0.94 ±		
	1" diameter	43	24	51	0.33	0.21	0.30		
	RUNG ^a (diamond)	$168 \pm$	86 ±	$127 \pm$	0.96 ±	$0.62 \pm$	$0.79 \pm$		
	1"x1"	34	16	49	0.28	0.11	0.27		
	RUNG ^a (square)	$146 \pm$	$86 \pm$	$116 \pm$	$0.83 \pm$	$0.63 \pm$	$0.73 \pm$		
	1"x1"	28	29	41	0.21	0.25	0.20		
+	RUNG ^a (plate)	$131 \pm$	73 1	$102 \pm$	0.75 ±	$0.54 \pm$	$0.64 \pm$		
	2"x5/8"	27	18	37	0.21	0.15	0.21	1/2	
	Grip dynamometer ^a	$123 \pm$	$68 \pm$	95 ±	$0.70 \pm$	$0.50 \pm$	$0.60 \pm$	Fail	
	(Jamar 45mm)	10	11	30	0.15	0.11	0.19		
				N			-		
	RAIL ^b (cylinder)	$85 \pm$	$67 \pm$	\					
	7/8" diameter	19	12	Rai	ls << R	ungs Gi	rip Strer	ngth	
	RAIL ^b (cylinder)	96 ±	69 ±					•	
	1.25" diameter	18	12						
	RAIL ^b (tapered cylinder)	$105 \pm$	$83 \pm$						
	7/8" to 1.25"	26	19						
	Grip dynamometer ^b	$114 \pm$	$64 \pm$						
	(Jamar 45mm)	14	12		<u></u>	(T 11 0)			

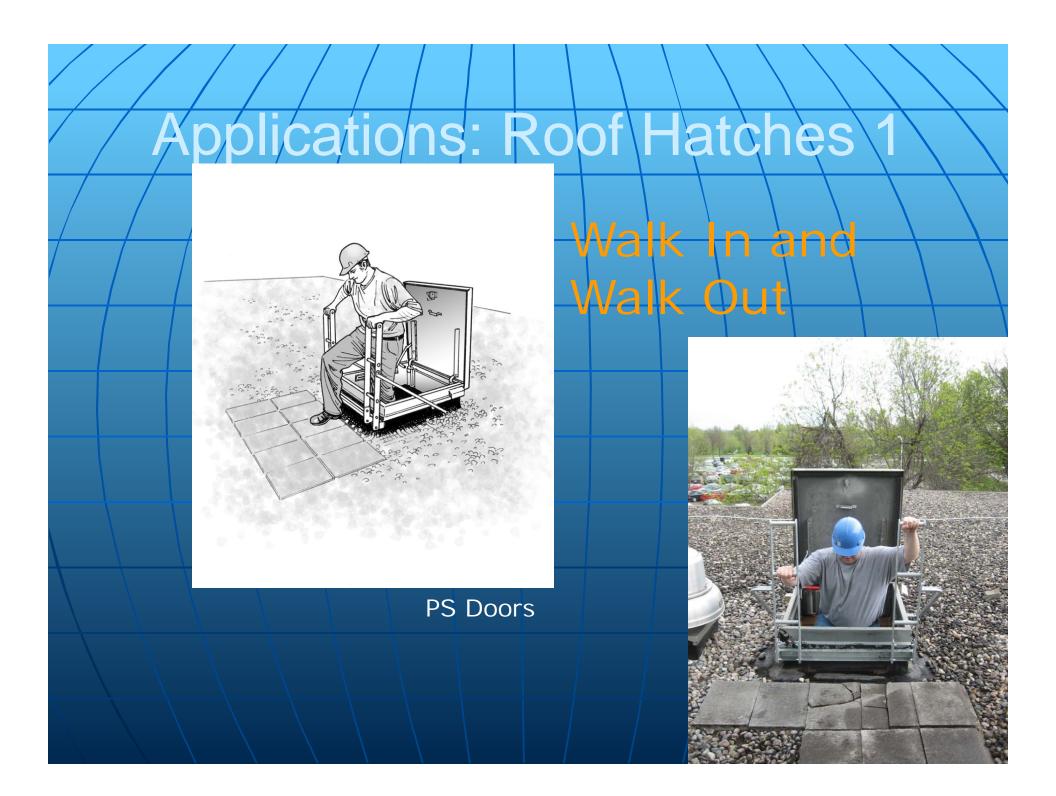
*Table adapted from Young &Armstrong 2009 (Table 9) and Young, JG. Dissertation (Table 3.3.1) a dominant hand measurement

^b non-dominant hand measurement

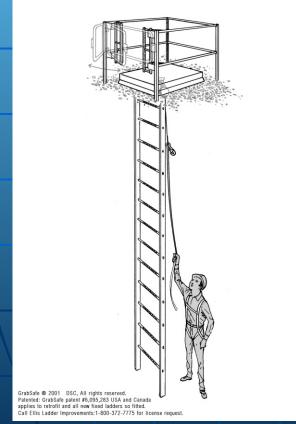
EXP 3a: Peak breakaway strength and normalized strength (mean ± SD), by handle and gender, for typical ladder handholds. Experiment with 6 males and 6 females, dominant hand measurement.*

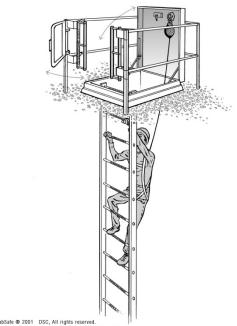
	Breakaway Force (lbs)			Breakaway/ Bodyweig	Breakaway/ Bodyweight				
RUNGS (cylinders)	Males	Females	All	Males Females	All				
2" diameter	147 ± 32	75 ± 26	111 ± 46	0.90 ± 0.24 0.61 ± 0.16 0	$.76 \pm 0.25$				
1.25" diameter	157 ± 34	84 ± 24	121 ± 47	0.98 ± 0.30 0.71 ± 0.17 0.	$.84 \pm 0.28$				
0.875" diameter	169 ± 38	90 ± 25	129 ± 51	1.04 ± 0.28 0.78 ± 0.27 0.100 ± 0.100	$.91 \pm 0.30$				
All Diameters Pooled	157 ± 35	83 ± 25	120 ± 48	0.97 ± 0.28 0.70 ± 0.21 0.	.84 ± 0.28				
					. 17 111				
RAILS (cylinders)	Males	Females	All	Males Females	< <mark>1⁄2 !!!</mark> All				
	Males 84 ± 20	Females 48 ± 18	All 66 ± 26	Males Females					
(cylinders)			· · · · ·	Males Females 0.52 ± 0.15 0.39 ± 0.13 0.52 ± 0.13	All				
(cylinders) 2" diameter	84 ± 20	48 ± 18	66 ± 26	MalesFemales 0.52 ± 0.15 0.39 ± 0.13 0.000 0.57 ± 0.14 0.49 ± 0.12 0.000	$All .46 \pm 0.15$				

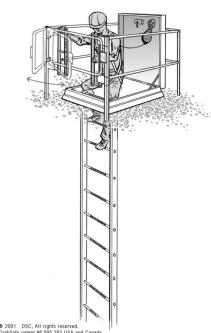

*Table adapted from Young et al. 2012 (Table 3) also in Young, JG. Dissertation (Table 4.4.2)


RUNGS outperform RAILS! May not be able to support bodyweight with RAILS even with both hands!

In all three experiments, rungs significantly outperformed rails. Some rung designs performed poorly (plates, corners, large cylinders)




Figure 1. RAILS vs. RUNGS for all 3 experiments. For males, mean strength is greater for any of the rung designs compared to any of the rail designs tested. For females, only the 1" cylinder rail and the tapered cylinder rail afford greater strength than the 2" cylinder rung or the plate rung, otherwise rungs afford greater strength than rails on average.



Roof Hatches 2

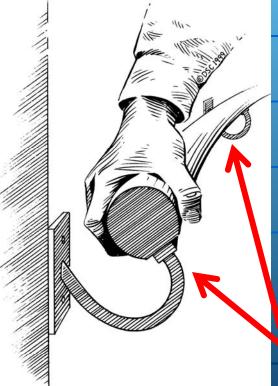
GrabSafe ♥ 2001 DSC, All rights reserved. Patented: GrabSafe patent #6,065,278,11SA and Canada applies to retrofit and all new fixed fadders so fitted. Call Ellis Ladder Improvements:1-800-372-7775 for license request.

GrabSafe @ 2001 DSC, All rights reserved. Patented: GrabSafe patent #6,095,283 USA and Ganada applies to retroit and all new lixed ladders so titted. Call Ellis Ladder Improvements:1-800-372-7775 for license request.

Portable Ladders

Commercial

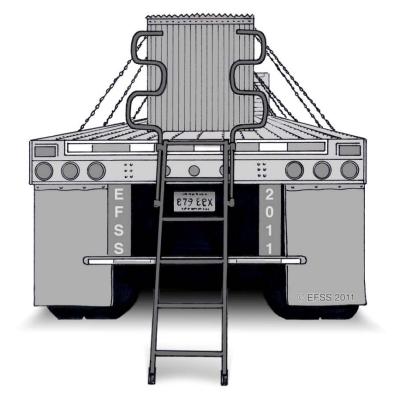
Residential


Walk-through design safer Horizontal grab appears intuitive

Achieves 3 ft Projection (OSHA) Adds 3 ft to any Portable Ladder Walk-Through each direction Compatible with most Stand-Offs Horizontal Grab Bars are reliable

<u>Stair Rails:</u> Continuous Sliding Grip Possible

Hand does not leave stair rail



Two stair rails required for Three Point Control height 42", 44-60" apart

No Hand Obstruction

Protection for falls down stairs: Two hands and one foot with alternating feet

Flatbed Trailers

Flatbed Trailer Access Locks into rubrail

Access with Handhold

catwalks

Three Point Control

Two hands and one foot repeated with each step

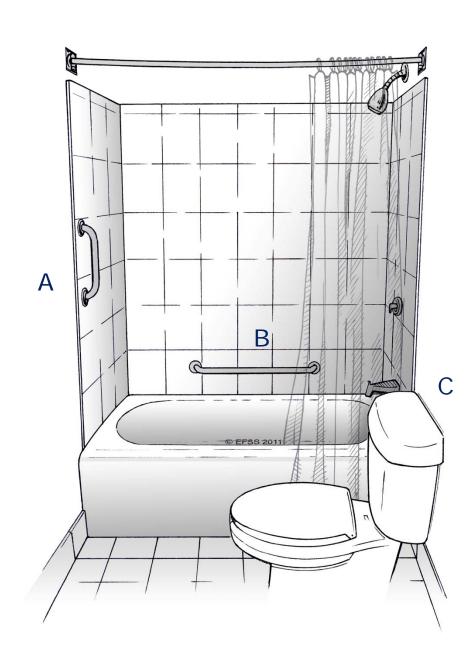
Standfastusa.com

Design Rules for Climbing: All handholds should be horizontal Footing should be flat and horizontal Never hold side rails of ladders

Summar

Application at Heights: Always hold ladder rungs Hold stair rails

Result: Fewer fall injuries & deaths



Vertical Bar Next to shower head end

Vertical Bars

Vertical Bar next to toilet

No Two Hotels the Same

The Standard for Hotels in USA

Each Hotel in the USA now has a unique arrangement for Grab Bars in bathrooms:

Which is correct? Answer....

A 6" Vertical slide for hand allowed. Grab Bar becomes lateral if step down occurs

B Horizontal Grab Bar to leverage arm up from either end laying in the tub

C <u>Not</u> put Bar (A) here where toilet obstructs exit

Questions/Discussion

Together we need to establish the proper
shape criteria for "Three Point Control"– a horizontal grip is keyAll industries need to redesign their handholds and
decide on Fall Protection Systems at lower heights

 Ref. Three Point Control paper
 Professional Safety Journal publication date: November 2012
 J. Nigel Ellis: <u>dsc@FallSafety.com</u>
 302 571 8470 x121 Slides provided to Nigel Ellis for presentation on Three Point Control Analysis and Recommendations, Taken from:

Young, JG (2011) Biomechanics of hand/handhold coupling and factors affecting the capacity to hang on. *Doctoral dissertation*, University of Michigan, Ann Arbor, MI

Young, JG; Woolley, CB; Armstrong, TJ. (2010). Effect of handhold orientation, size, and wearing gloves on the ability to hang on. (presentation) *International Conference on Fall Protection and Prevention 2010*. Morgantown, WV.

Friction helps you hang on:

Table 2.3.2 Peak breakaway strength and grip strength (mean \pm SD) by handle and gender, for high- and low-friction handholds (Exp 2).

Handle	Peak Force (N)		Peak Force / Bodyweight		Peak Force / Grip Strength	
	Males	Females	Males	Females	Males	Females
25mm horizontal cylinder	766 ±	617 ±	1.07 ±	0.93 ±	1.61 ±	1.55 ±
	121	97	0.18	0.14	0.25	0.25
25mm horizontal cylinder	628 ±	477 ±	0.88 ±	0.73 ±	1.32 ±	1.21 ±
(low-friction)	95	33	0.15	0.10	0.22	0.12
Grip dynamometer (overhead measurement)	481 ± 76	399 ± 46	0.68 ± 0.13	0.61 ± 0.10	1.00	1.00
Grip dynamometer	474 ±	390 ±	0.67 ±	0.59 ±	0.98 ±	0.98 ±
	84	44	0.14	0.09	0.05	0.05

Friction helps you hang on:

	Peak Force (N)			Peak Force / Bodyweight			Peak Force / Grip Strength ¹			
Glove type	Males	Females	All Subjects	Males	Females	All Subjects	Males	Females	All Subjects	
	45° Orientation			45° Orientation			45° Orientation			
Low-Friction Glove (cotton)	274±69	185±53	230±76	0.38±0.10	0.35±0.11	0.36±0.10	0.69±0.16	0.67±0.18	0.68±0.17	
Bare Hand	550±127	300±92	425±167	0.76±0.21	0.57±0.18	0.67±0.22	1.30±0.29	1.00 ± 0.27	1.15 ± 0.32	
High-Friction Glove (PVC dots)	598±126	362±114	480±168	0.83±0.23	0.69±0.21	0.76±0.23	1.45±0.19	1.30±0.33	1.38±0.28	
All Glove Types Pooled	474±180	282±115	378±179	0.66±0.28	0.54±0.22	0.60±0.25	1.14±0.4	0.99±0.37	1.07±0.39	
	60° Orient	ation		60° Orienta	tion		60° Orientation			
Low-Friction Glove (cotton)	424±98	249±61	336±120	0.58±0.16	0.47±0.11	0.53±0.14	1.06±0.2	0.89±0.13	0.98±0.19	
Bare Hand	650±149	331±112	490±207	0.90±0.25	0.62±0.18	0.76±0.26	1.53±0.34	1.10±0.34	1.31±0.40	
High-Friction Glove (PVC dots)	709±153	391±142	550±217	0.99±0.29	0.74±0.24	0.87±0.29	1.72±0.27	1.40±0.40	1.56±0.37	
All Glove Types Pooled	582±182	324± 123	459 ±206	0.82±0.29	0.61±0.21	0.72±0.28	1.44±0.39	1.13±0.37	1.28±0.41	
	75° Orient	ation		75° Orientation			75° Orientation			
Low-Friction Glove (cotton)	575±114	298±77	436±170	0.79±0.19	0.57±0.14	0.68±0.20	1.44±0.2	1.07±0.21	1.26±0.27	
Bare Hand	691±145	352±143	521±223	0.96±0.28	0.66±0.24	0.81±0.30	1.63±0.37	1.17±0.44	1.40±0.46	
High-Friction Glove (PVC dots)	716±175	408±179	562±234	1.00 ± 0.33	0.77±0.28	0.88±0.32	1.73±0.28	1.44±0.49	1.58±0.42	
All Glove Types Pooled	660±157	353±144	507 ±215	0.92±0.28	0.67±0.24	0.79±0.29	1.60±0.31	1.23 ± 0.42	1.41 ± 0.41	
	90° Orient	90° Orientation		90° Orientation			90° Orientation			
Low-Friction Glove (cotton)	596±115	318±95	457±176	0.82±0.19	0.60±0.17	0.71±0.21	1.49±0.17	1.14±0.27	1.31±0.29	
Bare Hand	717±133	374±133	545±218	0.99±0.23	0.71±0.21	0.85±0.26	1.69±0.32	1.25 ± 0.43	1.47 ± 0.44	
High-Friction Glove (PVC dots)	743±173	396±128	570±231	1.03 ± 0.31	0.76±0.23	0.90±0.30	1.81±0.31	1.43±0.40	1.62 ± 0.40	
All Glove Types Pooled	685±154	362±122	524 ±213	0.95±0.26	0.69±0.21	0.82±0.27	1.66±0.30	1.27±0.39	1.47±0.40	
	All Orientations Pooled		All Orientations Pooled			All Orientations Pooled				
Low-Friction Glove (cotton)	467 ±164	263 ±88	365 ±167	0.64±0.24	0.50±0.16	0.57±0.22	1.54±0.36	1.13±0.38	1.33±0.42	
Bare Hand	652 ±150	339 ±122	495 ±208	0.90±0.26	0.64±0.21	0.77±0.27	1.17±0.37	0.94±0.27	1.06±0.34	
High-Friction Glove (PVC dots)	691 ±164	389 ±141	540 ±215	0.96±0.30	0.74±0.24	0.85±0.29	1.68±0.29	1.39 ± 0.40	1.53±0.38	
All Glove Types Pooled	604 ±187	330 ±129	467 ±211	0.84±0.30	0.63±0.23	0.73±0.28	1.46±0.40	1.15±0.40	1.31±0.43	

¹Normalized by subject's mean grip strength measured while wearing corresponding glove type on the grip dynamometer (position 2)

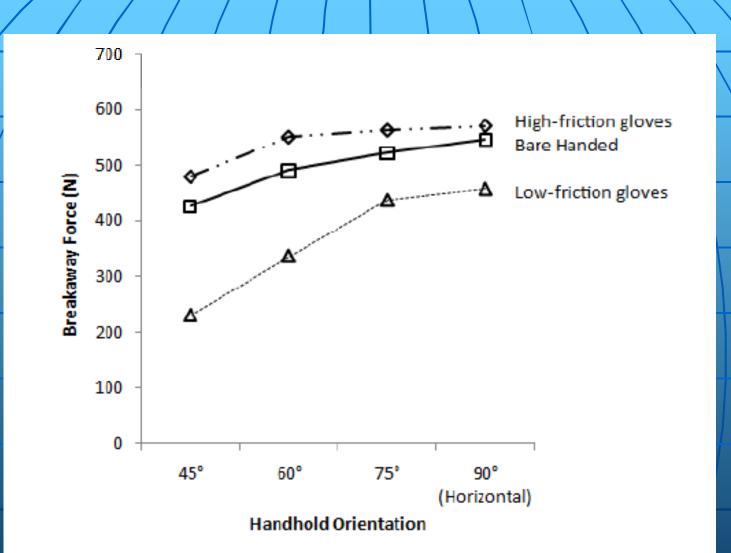
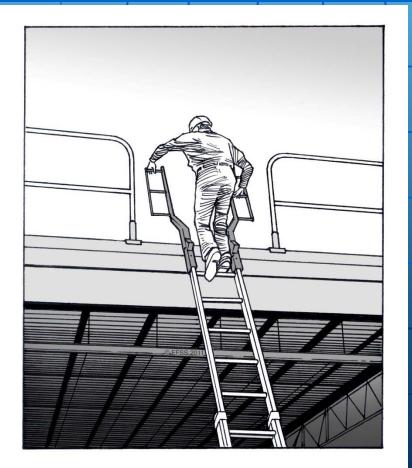



Figure 4.4.2 Breakaway strength (N) by orientation and glove type (non-dominant hand) across all subjects. Strength decreases non-linearly as the handle inclination was increased from the horizontal for all glove types over this range of handle orientations. Strength was consistently least for the low-friction glove and greatest for the high-friction glove.

Commercial Roof

Metric/English

1 cm = 0.4 inches 25 mm = 1 inch 5.12 newton = 1 lbf